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LETTER TO THE EDITOR 

Free field-matter commutation relations in operator 
radiation reaction theory 

B R Mollow 
Department of Physics, University of Massachusetts, Boston, Mass. 02125. USA 

Received 16 September 1975 

Abstract. Resonant light scattering is considered in the Heisenberg picture, by making use 
of operator radiation reaction theory. A crucial commutator between matter and free-field 
variables is shown to vanish, and the validity of the quantum fluctuation-regression theorem, 
like that of the optical Bloch equations which govern the reduced atomic density matrix, is 
firmly established, apart from renormalization difficulties, within the rotating wave 
approximation. 

The validity of the optical Bloch equations which govern the density matrix for a driven 
two-level atom has recently been established by fully quantum mechanical arguments 
both in the Schrodinger picture (Mollow 1975) and in the Heisenberg picture (Ackerhalt 
and Eberly 1974, Kimble and Mandel 1975, Saunders et a1 1975), and has been shown 
in particular to depend only upon the relatively unrestrictive assumption that the 
saturated linewidth is small compared to the optical atomic resonance frequency. The 
same assumption is shown by a Schrodinger-picture argument (Mollow 1975) to 
guarantee the validity of the quantum fluctuation-regression theorem (Lax 1968), and 
hence of the result which has been found through its use for the frequency spectrum of 
resonantly scattered light (Mollow 1969). 

The purpose of this letter is to show that the validity of the fluctuation-regression 
theorem can be established by a relatively simple argument in the Heisenberg picture, 
where it can be shown (Ackerhalt and Eberly 1974, Kimble and Mandel 1975, Saunders 
et a1 1975) that in the dipole approximation, the positive-frequency part E'+) ( r  = 0, t )  
of the electric field operator at the position of the atom can be found from the relation 

p,, . E'+)(r = 0, t )  = ih($c+iSo)a,,(t)+p,, . E'g)(r = 0, t ) ,  (1) 

in which p lo  is the electric dipole matrix element connecting the upper atomic state 
Il), with the atomic ground state IO),; K and So are the Einstein A coefficient and the 
radiative frequency shift, respectively, for the transition in question ; ai,(t) is the 
Heisenberg atomic transition operator which has the initial value aAv = Iv), ,(AI (where 
A, v = 0, 1); and E&, t )  is the freely-propagating part of the electric field operator. 

For an initially coherent field-state (Glauber 1963), the validity of the optical Bloch 
equations which govern the reduced atomic density matrix elements 

Pl,(t) = ( b i , ( t ) l )  (2) 
follows directly (Ackerhalt and Eberly 1974, Kimble and Mandel 1975, Saunders et a1 
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1975) from (1) and the relations (Glauber 1963) 

in which Ec(r, t )  is the c-number amplitude of the multimode coherent state, propagated 
freely in time, and I ) is the fixed Heisenberg state vector for the joint atom-field system. 

One may seek to establish the validity of the fluctuation-regression theorem (and 
hence the accuracy of the value found (Mollow 1969) for the atomic correlation function 
( la~o(t’)alo(t)l ) which determines the scattered field spectrum) by similarly showing 
that the quantities 

RA&; t’) 5 ( l 4 O ( t ’ ) ~ A V ( ~ ) I )  (4) 

(where t 2 t’) obey the same set of optical Bloch equations as do the quantities p,,(t) .  
The proof of this is entirely straightforward, but, as noted by Hassan and Bullough 
(1975), requires the satisfaction of the commutation relation 

[E(F+)(O, f), Ul&’ ) ]  = [aI,(t‘), E:-’(O, t)]+ = 0 for t 2 t‘. ( 5 )  

I t  can be shown? that the commutator of the free electric field vector EAX) and the 
full Heisenberg current operator J(x’) can be expressed quite rigorously and generally 
at any pair of space-time points x = r ,  t and x’ = r’, t’ as 

[E&), W I  = - [&4, J(x‘)l ( 6 4  

where 

d4Z(DC(x - Z) - D,(x - Z))O(t’ - t)J(I) 
dt  

Dc(x) and DA(x) are the causal and advanced electromagnetic Green functions, respec- 
tively, and the unit step function O(t’ - t )  vanishes unless f < t’. For t > t‘, the advanced 
Green function can make no contribution in (6bX while for r = 0 and t > t’ the causal 
Green function can make a contribution only if c(t- t’) is less than the maximum radius 
R of the current distribution. It follows then quite exactly that 

[EF(O, t), J(r’, t ‘ ) ]  E 0 for t -  t‘ > R/c. (7) 
A similar argument, with J(r‘, t ‘ )  replaced by any matter-operator Q,(t’), leads to the 

same conclusion, 

f h  Q,(f’)l = 0 for t-t’ > R/c. (8) 
In the limit R -+ 0, then, where the dipole approximation is valid, (8) holds for all 

t > t‘, and hence the positive- and negative-frequency parts (with respect to t) of the 
left-hand side of (8) must each certainly vanish after a few optical periods. Since (5) is 
satisfied identically at t = t’ by virtue of (1) (Hassan and Bullough 1975), and since the 
rotating wave approximation in any case is based upon a time-average over the optical 
period, the validity of (5) and hence of the fluctuation-regression theorem is proved, 
within the rotating wave approximation$. 

t See for example Mollow (1973). equations (2.17) and (2.7); the quantum statistical brackets ( ) should be 
deleted from equations (2.17) and (2.16). 
$ One has the option of introducing the rotating wave approximation after evaluating the commutator 
between the atomic and free-field operators in the equations governing R A # ;  f’). If this is done, the frequency 
signatures on the free-field operators do not appear in (S), and the relevant commutator then vanishes 
identically for t > t’ by virtue of (8). 
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Lest it be feared that the limit R - 0 introduces a singularity which affects the 
validity of the above argument (such a singularity could affect the Bloch equations .for 
RA&; r ’ )  only at t = t’), it is perhaps worth mentioning that the entire argument can 
be carried out within the dipole approximation, where one finds the relation 

where w l o  is the atomic resonance frequency, while F ( t - t ’ )  is a function (Mollow 1975) 
which for t > E’ falls to zero rapidly (within a few optical periods) with increasing t, 
and which at t = t’ has the finite value FfO) = h2(itc+iSw)Ap,,12. Equation (5) then 
follows immediately upon setting Qa(t’) = alo(t’) in (9). 

The radiative frequency shift 60 of course is finite only if a cut-off, for example, is 
introduced into the photon density of states (Saunders et al 1975), but the same p r o b  
lem arises in deriving the (optical Bloch) equations which govern the atomic density 
matrix. Tfie equations goveming the two-time atomic correlation functions thus enjoy 
the same degree of validity as do the (same) equations governing the atomic density 
matrix, both being firmly and equaily established, apart from renormalization ques- 
tions, within the rotating wave approximation. 
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